1,针对给定的控制对象,设计合理的最优性能指标。
2,如何求解给定函数的极值以及取得该极值的条件。
3,使用动态规划算法解决最短路径问题或者其他多级优化问题。
4,针对给定的最优性能指标,使用以变分法和庞特里亚金极小值原理建立最优控制问题的必要条件。
5,研究航天器轨道规划、船舶导航、汽车主动悬架控制、最优投资策略等实际案例的求解方法。
6,使用MATLAB协助求解函数优化和偏微分方程,通过仿真验证所设计的最优控制器的性能。 "Optimal Control" is a core course for graduate students in control studies. Prior to learning optimal control, one should have a foundational understanding of linear system theory. Upon completing the course, you will gain insights into:
1. Designing appropriate optimal performance criteria for a given control object.
2. Ability to find the extremum of a given function and the conditions for achieving this extremum.
3. Using dynamic programming algorithms to solve shortest path problems or other multi-stage optimization issues.
4. Establishing the necessary conditions for optimal control problems using variational methods and Pontryagin's minimum principle, based on given optimal performance criteria.
5. Exploring solution methods for practical cases such as spacecraft trajectory planning, ship navigation, automotive active suspension control, and optimal investment strategies.
6. Utilizing MATLAB to assist in function optimization and solving partial differential equations, and to verify the performance of the designed optimal controller through simulation.