Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Geometric Laplacians on Self-Conformal Fractal Curves in the Plane

Institut des Hautes Etudes Scientifiques (IHES) via YouTube

Overview

Explore geometric Laplacians on self-conformal fractal curves in the plane through this 51-minute talk by Naotaka Kajino from Kyoto University, presented at the Institut des Hautes Etudes Scientifiques (IHES). Delve into the speaker's ongoing research on constructing a family of Laplacians whose heat kernels and eigenvalue asymptotics respect the fractal nature of the curve's Euclidean geometry. Discover how this work extends from previous studies on circle packing fractals, where a Dirichlet form was explicitly defined using a weighted sum of standard one-dimensional Dirichlet forms on constituent circles. Learn about the uniqueness of this form for classical Apollonian gaskets and its satisfaction of Weyl's eigenvalue asymptotics. Understand the key aspects of constructing Laplacians for self-conformal fractal curves, including the use of harmonic measure in defining the Dirichlet form and fractional-order Besov seminorms for the L^2-inner product. Gain insights into this extension of geometric analysis to non-circle packing self-conformal fractals, advancing the field of fractal geometry and analysis.

Syllabus

Naotaka Kajino - Geometric Laplacians on Self-Conformal Fractal Curves in the Plane

Taught by

Institut des Hautes Etudes Scientifiques (IHES)

Reviews

Start your review of Geometric Laplacians on Self-Conformal Fractal Curves in the Plane

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.