Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Massachusetts Institute of Technology

Mechanical Behavior of Materials, Part 1: Linear Elastic Behavior

Massachusetts Institute of Technology via edX

This course may be unavailable.

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!

All around us, engineers are creating materials whose properties are exactly tailored to their purpose. This course is the first of three in a series of mechanics courses from the Department of Materials Science and Engineering at MIT. Taken together, these courses provide similar content to the MIT subject 3.032: Mechanical Behavior of Materials.

The 3.032x series provides an introduction to the mechanical behavior of materials, from both the continuum and atomistic points of view. At the continuum level, we learn how forces and displacements translate into stress and strain distributions within the material. At the atomistic level, we learn the mechanisms that control the mechanical properties of materials. Examples are drawn from metals, ceramics, glasses, polymers, biomaterials, composites and cellular materials.

Part 1 covers stress-strain behavior, topics in linear elasticity and the atomic basis for linear elasticity, and composite materials.

Part 2 covers stress transformations, beam bending, column buckling, and cellular materials.

Part 3 covers viscoelasticity (behavior intermediate to that of an elastic solid and that of a viscous fluid), plasticity (permanent deformation), creep in crystalline materials (time dependent behavior), brittle fracture (rapid crack propagation) and fatigue (failure due to repeated loading of a material).

Syllabus

Week 1: Normal and shear stress Normal and shear strain Hooke's law for isotropic materials

Week 2: 3D stress states Stress strain curves for engineering materials Strain energy

Week 3: Anisotropic materials and symmetry Composite materials

Week 4: Bonding between atoms; energetic basis for linear elasticity; Thermal strain; origins of thermal strain Rubber elasticity: entropic basis for non-linear elasticity

Week 5: Final Quiz

Taught by

Lorna J. Gibson

Reviews

5.0 rating, based on 2 Class Central reviews

Start your review of Mechanical Behavior of Materials, Part 1: Linear Elastic Behavior

  • I absolutely loved this course. The professor does a great job of explaining the concepts of Strength of Materials with real life examples. The lectures were very well structured. The problem sets were engaging and helped the material properly.
    A great experience. Strongly recommended for all engineering students

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.