Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Google Cloud

Art and Science of Machine Learning em Português Brasileiro

Google Cloud via Coursera

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Este é o curso Art and Science of Machine Learning. O curso tem seis módulos. Falaremos sobre as habilidades essenciais de intuição, bom senso e experimentação em ML para ajustar e otimizar modelos e ter melhor desempenho. Você aprenderá a generalizar os modelos usando técnicas de regularização e conhecerá os efeitos dos hiperparâmetros, como tamanho de lote e taxa de aprendizado, sobre o desempenho do modelo. Também abordaremos alguns algoritmos mais comuns de otimização de modelo e mostraremos como especificar um método de otimização no código do TensorFlow.

Syllabus

  • Introdução
    • Este é o curso Art and Science of Machine Learning. Falaremos sobre as habilidades essenciais de intuição, bom senso e experimentação em ML para ajustar e otimizar modelos e ter melhor desempenho. Você aprenderá a generalizar os modelos usando técnicas de regularização e conhecerá os efeitos dos hiperparâmetros, como tamanho de lote e taxa de aprendizado, sobre o desempenho do modelo. Também abordaremos alguns algoritmos mais comuns de otimização de modelo e mostraremos como especificar um método de otimização no código do TensorFlow.
  • A arte do ML
    • Neste módulo, você aprenderá a ajustar o tamanho do lote e a taxa de aprendizado para melhorar o desempenho do modelo, otimizá-lo e aplicar os conceitos ao código do TensorFlow.
  • Ajuste de hiperparâmetros
    • Neste módulo, você aprenderá a diferenciar parâmetros e hiperparâmetros. Em seguida, veremos a abordagem tradicional de pesquisa de grade e outras com algoritmos mais inteligentes. Por fim, você verá como o Cloud ML Engine facilita a automação do ajuste de hiperparâmetros.
  • Uma pitada de ciência
    • Neste módulo, falaremos da ciência junto com a arte do machine learning. Primeiro vamos falar sobre como fazer a regularização da esparsidade e criar modelos mais simples e concisos. Depois abordaremos a regressão logística e veremos como determinar o desempenho.
  • A ciência das redes neurais
    • Neste módulo, vamos nos aprofundar na ciência, especificamente as redes neurais.
  • Embeddings
    • Neste módulo, você aprenderá a usar embeddings para gerenciar dados esparsos, acelerando o treinamento e reduzindo o consumo de memória dos modelos de machine learning que usam esses dados. Os embeddings também são uma forma de reduzir a dimensionalidade e tornar os modelos mais simples e generalizáveis.
  • Resumo

Taught by

Google Cloud Training

Reviews

4.7 rating at Coursera based on 15 ratings

Start your review of Art and Science of Machine Learning em Português Brasileiro

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.