Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Google Cloud

Intro to TensorFlow em Português Brasileiro

Google Cloud via Coursera

Overview

O objetivo deste curso é aproveitar a flexibilidade e a facilidade de uso do TensorFlow 2.x e do Keras para criar, treinar e implantar modelos de machine learning. Você aprenderá sobre a hierarquia da API TensorFlow 2.x e conhecerá os principais componentes do TensorFlow nos exercícios práticos. Mostraremos como trabalhar com conjuntos de dados e colunas de atributos. Você aprenderá a projetar e criar um pipeline de entrada de dados do TensorFlow 2.x. Você terá uma experiência prática com o carregamento de dados CSV, matrizes numpy, dados de texto e imagens usando o tf.Data.Dataset e com a criação de colunas de atributos numéricas, categóricas, em bucket e com hash. Apresentaremos as APIs Keras Sequential e Keras Functional para mostrar como criar modelos de aprendizado profundo. Abordaremos as funções de ativação, perda e otimização. Nos laboratórios práticos dos notebooks do Jupyter, você poderá criar modelos de machine learning de regressão linear básica e de regressão logística básica e avançada. Você aprenderá a treinar, implantar e produzir modelos de machine learning em escala com o AI Platform do Cloud.

Syllabus

  • Introdução ao curso
    • Este curso é uma introdução ao TensorFlow 2.x, que incorpora a facilidade de uso do Keras para a criação de modelos de machine learning. Abordaremos o design e a criação de um pipeline de dados de entrada do TensorFlow 2.x, a criação de modelos de machine learning com essa ferramenta e com o Keras, a melhoria da acurácia desses modelos e a geração dos modelos para uso em escala.
  • Introdução ao TensorFlow
    • Apresentaremos o novo paradigma do TensorFlow 2.x. Você aprenderá sobre a hierarquia da API TensorFlow e conhecerá os principais componentes do TensorFlow, os tensores e as variáveis com exercícios práticos.
  • Projetar e criar um pipeline de dados de entrada do TensorFlow
    • Mostraremos como trabalhar com conjuntos de dados e colunas de atributos. Você terá uma experiência prática com o carregamento de dados CSV, matrizes numpy com tf.data.Dataset, dados de texto e imagens usando o tf.Data.Dataset e com a criação de colunas de atributos numéricas, categóricas, em bucket e com hash.
  • Como treinar redes neurais com o TensorFlow 2 e com a API Keras Sequential
    • Neste módulo, você aprenderá a escrever modelos do TensorFlow com a API Keras Sequential. Mas, antes disso, falaremos sobre funções de ativação, perda e otimização. Em seguida, você conhecerá a API Keras Sequential para aprender a criar modelos de aprendizado profundo com ela. Você também verá como implantar o modelo para previsão na nuvem.
  • Como treinar redes neurais com o TensorFlow 2 e a API Keras Functional
    • A API de modelo Sequential é ideal para o desenvolvimento de modelos de machine learning na maioria dos casos, mas também tem limitações. Por exemplo, ela não é simples de definir modelos com várias fontes de entrada, produzir muitos destinos de saída ou modelos que reutilizam camadas. A API Keras Functional é uma forma de criar modelos mais flexíveis do que a API tf.keras.Sequential e é capaz de processar modelos com topologia não linear, com camadas compartilhadas e com várias entradas ou saídas. Além disso, ela oferece uma maneira mais flexível de definir os modelos. Especificamente, ela permite a definição de vários modelos de entrada e saída e que compartilham camadas. Mais do que isso, com ela é possível definir grafos de rede acíclicos ad hoc. Geralmente, a ideia principal é que um modelo de aprendizado profundo seja um grafo acíclico direcionado (DAG) de camadas. Portanto, a API Functional é uma forma de criar grafos de camadas. Também mostraremos como a regularização pode ajudar no desempenho do modelo.
  • Resumo
    • Resumiremos os principais tópicos sobre o TensorFlow abordados no curso até agora. Revisitaremos o principal código do TensorFlow, a API tf.data, as APIs Keras Sequential e Functional e o escalonamento dos modelos de machine learning com o AI Platform do Cloud.

Taught by

Google Cloud Training

Reviews

4.6 rating at Coursera based on 23 ratings

Start your review of Intro to TensorFlow em Português Brasileiro

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.