Game Theory

Game Theory

IIT Bombay July 2018 via YouTube Direct link

Lecture 34 : Cooperative Games: The Nash Bargaining Problem III

35 of 41

35 of 41

Lecture 34 : Cooperative Games: The Nash Bargaining Problem III

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Game Theory

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Introduction-Game Theory
  2. 2 Lecture 1 : Combinatorial Games: Introduction and examples
  3. 3 Lecture 2 : Combinatorial Games: N and P positions
  4. 4 Lecture 3 : Combinatorial Games: Zermelo’s Theorem
  5. 5 Lecture 4 : Combinatorial Games: The game of Hex
  6. 6 Lecture 5 : Combinatorial Games: Nim games
  7. 7 Lecture 6: Combinatorial Games: Sprague-Grundy Theorem - I
  8. 8 Lecture 7: Combinatorial Games: Sprague-Grundy Theorem - II
  9. 9 Lecture 8: Combinatorial Games: Sprague-Grundy Theorem - III
  10. 10 Lecture 9: Combinatorial Games: The Sylver Coinage Game
  11. 11 Lecture 10: Zero-Sum Games: Introduction and examples
  12. 12 Lecture 11 : Zero-Sum Games: Saddle Point Equilibria & the Minimax Theorem
  13. 13 Lecture 12 : Zero-Sum Games: Mixed Strategies
  14. 14 Lecture 13 : Zero-Sum Games: Existence of Saddle Point Equilibria
  15. 15 Lecture 14 : Zero-Sum Games: Proof of the Minimax Theorem
  16. 16 Lecture 15 : Zero-Sum Games: Properties of Saddle Point Equilibria
  17. 17 Lecture 16 : Zero-Sum Games: Computing Saddle Point Equilibria
  18. 18 Lecture 17 : Zero-Sum Games: Matrix Game Properties
  19. 19 Lecture 18 : Non-Zero-Sum Games: Introduction and Examples
  20. 20 Lecture 19 : Non-Zero-Sum Games: Existence of Nash Equilibrium Part I
  21. 21 Lecture 20 : Non-Zero-Sum Games: Existence of Nash Equilibrium Part II
  22. 22 Lecture 21 : Iterated elimination of strictly dominated strategies
  23. 23 Lecture 22 : Lemke-Howson Algorithm I
  24. 24 Lecture 23 : Lemke-Howson Algorithm II
  25. 25 Lecture 24 : Lemke-Howson Algorithm III
  26. 26 Lecture 25 : Evolutionary Stable Strategies -I
  27. 27 Lecture 26 : Evolutionarily Stable Strategies - II
  28. 28 Lecture 27 : Evolutionarily Stable Strategies - III
  29. 29 Lecture 28 : Fictitious Play
  30. 30 Lecture 29 : Brown-Von Neumann-Nash Dynamics
  31. 31 Lecture 30 : Potential Games
  32. 32 Lecture 31 : Cooperative Games: Correlated Equilibria
  33. 33 Lecture 32 : Cooperative Games: The Nash Bargaining Problem I
  34. 34 Lecture 33 : Cooperative Games: The Nash Bargaining Problem II
  35. 35 Lecture 34 : Cooperative Games: The Nash Bargaining Problem III
  36. 36 Lecture 35 : Cooperative Games: Transferable Utility Games
  37. 37 Lecture 36 : Cooperative Games: The Core
  38. 38 Lecture 37 : Cooperative Games: Characterization of Games with non-empty Core
  39. 39 Lecture 38 : Cooperative Games: Shapley Value
  40. 40 Lecture 39 : Cooperative Games: The Nucleolus
  41. 41 Lecture 40 : The Matching Problem

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.