Completed
Lecture 4 : Combinatorial Games: The game of Hex
Class Central Classrooms beta
YouTube videos curated by Class Central.
Classroom Contents
Game Theory
Automatically move to the next video in the Classroom when playback concludes
- 1 Introduction-Game Theory
- 2 Lecture 1 : Combinatorial Games: Introduction and examples
- 3 Lecture 2 : Combinatorial Games: N and P positions
- 4 Lecture 3 : Combinatorial Games: Zermelo’s Theorem
- 5 Lecture 4 : Combinatorial Games: The game of Hex
- 6 Lecture 5 : Combinatorial Games: Nim games
- 7 Lecture 6: Combinatorial Games: Sprague-Grundy Theorem - I
- 8 Lecture 7: Combinatorial Games: Sprague-Grundy Theorem - II
- 9 Lecture 8: Combinatorial Games: Sprague-Grundy Theorem - III
- 10 Lecture 9: Combinatorial Games: The Sylver Coinage Game
- 11 Lecture 10: Zero-Sum Games: Introduction and examples
- 12 Lecture 11 : Zero-Sum Games: Saddle Point Equilibria & the Minimax Theorem
- 13 Lecture 12 : Zero-Sum Games: Mixed Strategies
- 14 Lecture 13 : Zero-Sum Games: Existence of Saddle Point Equilibria
- 15 Lecture 14 : Zero-Sum Games: Proof of the Minimax Theorem
- 16 Lecture 15 : Zero-Sum Games: Properties of Saddle Point Equilibria
- 17 Lecture 16 : Zero-Sum Games: Computing Saddle Point Equilibria
- 18 Lecture 17 : Zero-Sum Games: Matrix Game Properties
- 19 Lecture 18 : Non-Zero-Sum Games: Introduction and Examples
- 20 Lecture 19 : Non-Zero-Sum Games: Existence of Nash Equilibrium Part I
- 21 Lecture 20 : Non-Zero-Sum Games: Existence of Nash Equilibrium Part II
- 22 Lecture 21 : Iterated elimination of strictly dominated strategies
- 23 Lecture 22 : Lemke-Howson Algorithm I
- 24 Lecture 23 : Lemke-Howson Algorithm II
- 25 Lecture 24 : Lemke-Howson Algorithm III
- 26 Lecture 25 : Evolutionary Stable Strategies -I
- 27 Lecture 26 : Evolutionarily Stable Strategies - II
- 28 Lecture 27 : Evolutionarily Stable Strategies - III
- 29 Lecture 28 : Fictitious Play
- 30 Lecture 29 : Brown-Von Neumann-Nash Dynamics
- 31 Lecture 30 : Potential Games
- 32 Lecture 31 : Cooperative Games: Correlated Equilibria
- 33 Lecture 32 : Cooperative Games: The Nash Bargaining Problem I
- 34 Lecture 33 : Cooperative Games: The Nash Bargaining Problem II
- 35 Lecture 34 : Cooperative Games: The Nash Bargaining Problem III
- 36 Lecture 35 : Cooperative Games: Transferable Utility Games
- 37 Lecture 36 : Cooperative Games: The Core
- 38 Lecture 37 : Cooperative Games: Characterization of Games with non-empty Core
- 39 Lecture 38 : Cooperative Games: Shapley Value
- 40 Lecture 39 : Cooperative Games: The Nucleolus
- 41 Lecture 40 : The Matching Problem