Game Theory

Game Theory

IIT Bombay July 2018 via YouTube Direct link

Lecture 11 : Zero-Sum Games: Saddle Point Equilibria & the Minimax Theorem

12 of 41

12 of 41

Lecture 11 : Zero-Sum Games: Saddle Point Equilibria & the Minimax Theorem

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Game Theory

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Introduction-Game Theory
  2. 2 Lecture 1 : Combinatorial Games: Introduction and examples
  3. 3 Lecture 2 : Combinatorial Games: N and P positions
  4. 4 Lecture 3 : Combinatorial Games: Zermelo’s Theorem
  5. 5 Lecture 4 : Combinatorial Games: The game of Hex
  6. 6 Lecture 5 : Combinatorial Games: Nim games
  7. 7 Lecture 6: Combinatorial Games: Sprague-Grundy Theorem - I
  8. 8 Lecture 7: Combinatorial Games: Sprague-Grundy Theorem - II
  9. 9 Lecture 8: Combinatorial Games: Sprague-Grundy Theorem - III
  10. 10 Lecture 9: Combinatorial Games: The Sylver Coinage Game
  11. 11 Lecture 10: Zero-Sum Games: Introduction and examples
  12. 12 Lecture 11 : Zero-Sum Games: Saddle Point Equilibria & the Minimax Theorem
  13. 13 Lecture 12 : Zero-Sum Games: Mixed Strategies
  14. 14 Lecture 13 : Zero-Sum Games: Existence of Saddle Point Equilibria
  15. 15 Lecture 14 : Zero-Sum Games: Proof of the Minimax Theorem
  16. 16 Lecture 15 : Zero-Sum Games: Properties of Saddle Point Equilibria
  17. 17 Lecture 16 : Zero-Sum Games: Computing Saddle Point Equilibria
  18. 18 Lecture 17 : Zero-Sum Games: Matrix Game Properties
  19. 19 Lecture 18 : Non-Zero-Sum Games: Introduction and Examples
  20. 20 Lecture 19 : Non-Zero-Sum Games: Existence of Nash Equilibrium Part I
  21. 21 Lecture 20 : Non-Zero-Sum Games: Existence of Nash Equilibrium Part II
  22. 22 Lecture 21 : Iterated elimination of strictly dominated strategies
  23. 23 Lecture 22 : Lemke-Howson Algorithm I
  24. 24 Lecture 23 : Lemke-Howson Algorithm II
  25. 25 Lecture 24 : Lemke-Howson Algorithm III
  26. 26 Lecture 25 : Evolutionary Stable Strategies -I
  27. 27 Lecture 26 : Evolutionarily Stable Strategies - II
  28. 28 Lecture 27 : Evolutionarily Stable Strategies - III
  29. 29 Lecture 28 : Fictitious Play
  30. 30 Lecture 29 : Brown-Von Neumann-Nash Dynamics
  31. 31 Lecture 30 : Potential Games
  32. 32 Lecture 31 : Cooperative Games: Correlated Equilibria
  33. 33 Lecture 32 : Cooperative Games: The Nash Bargaining Problem I
  34. 34 Lecture 33 : Cooperative Games: The Nash Bargaining Problem II
  35. 35 Lecture 34 : Cooperative Games: The Nash Bargaining Problem III
  36. 36 Lecture 35 : Cooperative Games: Transferable Utility Games
  37. 37 Lecture 36 : Cooperative Games: The Core
  38. 38 Lecture 37 : Cooperative Games: Characterization of Games with non-empty Core
  39. 39 Lecture 38 : Cooperative Games: Shapley Value
  40. 40 Lecture 39 : Cooperative Games: The Nucleolus
  41. 41 Lecture 40 : The Matching Problem

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.