Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the fascinating world of random interface growth in this 54-minute lecture from the USC Probability and Statistics Seminar. Delve into the KPZ equation, a stochastic partial differential equation central to various random growth phenomena such as tumors, bacterial colonies, infections, and propagating flame fronts. Learn how to combine tools from probability, partial differential equations, and integrable systems to understand the behavior of the KPZ equation when it exhibits unusual growth. Gain insights from Yier Lin's research, including joint works with Pierre Yves Gaudreau Lamarre and Li-Cheng Tsai, as you uncover the complexities of atypical growth in random interfaces.