Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control

Montreal Robotics via YouTube

Overview

Explore the groundbreaking research on incorporating vision-language models trained on Internet-scale data into end-to-end robotic control. Delve into the study of how this integration enhances generalization and enables emergent semantic reasoning in robotics. Learn about the novel approach of co-fine-tuning state-of-the-art vision-language models on both robotic trajectory data and Internet-scale vision-language tasks. Discover the innovative technique of expressing robotic actions as text tokens, allowing for seamless integration with natural language responses. Examine the concept of vision-language-action models (VLA) and the specific implementation known as RT-2. Analyze the extensive evaluation results, showcasing improved generalization to novel objects, interpretation of complex commands, and rudimentary reasoning abilities. Explore the potential of chain of thought reasoning in enabling multi-stage semantic reasoning for robotic tasks. Gain insights into the future possibilities of robotic control enhanced by large-scale pretraining on language and vision-language data from the web.

Syllabus

Yevgen Chebotar: RT-2- Vision-Language-Action Models Transfer Web Knowledge to Robotic Control

Taught by

Montreal Robotics

Reviews

Start your review of RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.