Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

The Nullstellensatz and Positivstellensatz for Sparse Tropical Polynomial Systems

Institut des Hautes Etudes Scientifiques (IHES) via YouTube

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a 46-minute lecture on the tropical analogue of the effective Nullstellensatz and Positivstellensatz for sparse polynomial systems. Delve into the work of Grigoriev and Podolskii, who established that a system of tropical polynomial equations is solvable if and only if a linearized system from a truncated Macaulay matrix is solvable. Discover an improved bound of the truncation degree for sparse tropical polynomial systems, inspired by the polyhedral construction of Canny-Emiris and refined by Sturmfels. Learn about the tropical Positivstellensatz and its application in deciding the inclusion of tropical basic semialgebraic sets. Examine how solutions can be computed through a reduction to parametric mean-payoff games, providing a tropical analogue of eigenvalue methods for solving polynomial systems. Gain insights from this joint work by Marianne Akian, Antoine Bereau, and Stéphane Gaubert, presented by Stéphane Gaubert from INRIA and CMAP, Ecole polytechnique, IP Paris, CNRS at the Institut des Hautes Etudes Scientifiques (IHES).

Syllabus

Stéphane Gaubert - The Nullstellensatz and Positivstellensatz for Sparse Tropical (...)

Taught by

Institut des Hautes Etudes Scientifiques (IHES)

Reviews

Start your review of The Nullstellensatz and Positivstellensatz for Sparse Tropical Polynomial Systems

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.