MedAI - Training Medical Image Segmentation Models with Less Labeled Data - Sarah Hooper
Stanford University via YouTube
Overview
Syllabus
Intro
Many use cases for deep-learning based medical image segmentation
Goal: develop and validate methods to use mostly unlabeled data to train segmentation networks.
Overview Inputs: labeled data. S, and labeled data, Our approach two-step process using data augmentation with traditional supervision, self supervised learning and
Supervised loss: learn from the labeled data
Self-supervised loss: learn from the unlabeled data
Step 1: train initial segmentation network
Main evaluation questions
Tasks and evaluation metrics
Labeling reduction
Step 2: pseudo-label and retrain
Visualizations
Error modes
Biomarker evaluation
Generalization
Strengths
Taught by
Stanford MedAI