Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Data-Driven Latent Representations for Time-Dependent Problems - Lecture 3

Centre International de Rencontres Mathématiques via YouTube

Overview

Explore a conference talk on data-driven latent representations for time-dependent problems in this recording from the "CEMRACS: Scientific Machine Learning" thematic meeting. Delve into topics such as denoising, minimization, climate downscaling, superresolution, and optimal transport. Learn about the Gold Converter Flow, sampling techniques, and conditional probability. Discover how time conditioning and variability are addressed in this context. Gain insights into the main ideas and applications of these concepts in scientific machine learning. Access additional features like chapter markers, keywords, and enriched content through CIRM's Audiovisual Mathematics Library.

Syllabus

Intro
Denoiser
Minimize
Application
Main idea
Time and downscaling
Climate downscaling
Superresolution
Gold Converter Flow
Sampling
Conditional probability
Optimal transport
Variability
Availability
Methods
Questions
Time conditioning

Taught by

Centre International de Rencontres Mathématiques

Reviews

Start your review of Data-Driven Latent Representations for Time-Dependent Problems - Lecture 3

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.