Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

High-Threshold and Low-Overhead Fault-Tolerant Quantum Memory

Simons Institute via YouTube

Overview

Explore a groundbreaking quantum error correction protocol presented in this 47-minute lecture by Ted Yoder from IBM. Delve into the implementation of fault-tolerant memory based on a family of LDPC codes with a high encoding rate, achieving an error threshold of 0.8% for the standard circuit-based noise model. Discover how this protocol compares to the surface code, which has been the uncontested leader in terms of high error threshold for nearly two decades. Learn about the syndrome measurement cycle requirements, qubit connectivity, and concrete examples of preserving logical qubits using fewer physical qubits compared to the surface code. Gain insights into how these findings bring demonstrations of low-overhead fault-tolerant quantum memory within reach of near-term quantum processors, potentially revolutionizing the field of quantum computing.

Syllabus

High-Threshold and Low-Overhead Fault-Tolerant Quantum Memory

Taught by

Simons Institute

Reviews

Start your review of High-Threshold and Low-Overhead Fault-Tolerant Quantum Memory

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.