Overview
Syllabus
Fluid Mechanics: Topic 1.1 - Definition of a fluid.
Fluid Mechanics: Topic 1.2 - Pressure.
Fluid Mechanics: Topic 1.3 - Absolute pressure and gage pressure.
Fluid Mechanics: Topic 1.4 - Density.
Fluid Mechanics: Topic 1.5 - Viscosity.
Fluid Mechanics: Topic 1.6 - Continuum approximation.
Fluid Mechanics: Topic 1.7 - Vapor pressure.
Fluid Mechanics: Topic 2.1 - Pascal's Law.
Fluid Mechanics: Topic 2.2 - Hydrostatic pressure gradient.
Fluid Mechanics: Topic 2.3 - Hydrostatic pressure distribution.
Fluid Mechanics: Topic 3.1 - Introduction to manometers.
Fluid Mechanics: Topic 3.2 - Barometers.
Fluid Mechanics: Topic 3.3 - Piezometer tube manometers.
Fluid Mechanics: Topic 3.4 - U-tube manometers.
Fluid Mechanics: Topic 3.5 - Inclined tube manometers.
Fluid Mechanics: Topic 4.1 - Hydrostatic force on a plane surface.
Fluid Mechanics: Topic 4.2 - Center of pressure on a plane surface.
Fluid Mechanics: Topic 4.3 - Hydrostatic force on a curved surface.
Fluid Mechanics: Topic 5 - Buoyancy & Archimedes' principle.
Fluid Mechanics: Topic 6.1 - Systems vs Control Volumes.
Fluid Mechanics: Topic 6.2 - Reynolds transport theorem.
Fluid Mechanics: Topic 7.1 - Conservation of mass for a control volume.
Fluid Mechanics: Topic 7.2 - Conservation of linear momentum for a control volume.
Fluid Mechanics: Topic 7.2.1 - Analyzing pressure forces on a CV.
Fluid Mechanics: Topic 7.3 - Conservation of energy for a control volume.
Fluid Mechanics: Topic 7.3.1 - Energy grade line (EGL) & Hydraulic grade line (HGL).
Fluid Mechanics: Topic 7.3.2 - The Bernoulli equation.
Fluid Mechanics: Topic 7.3.3 - Definition of pump efficiency & turbine efficiency.
Fluid Mechanics: Topic 8.1 - General Characteristics of laminar and turbulent flows in pipes.
Fluid Mechanics: Topic 8.2 - Developing and fully-developed flow in pipes.
Fluid Mechanics: Topic 8.3 - Pressure drop and head loss in pipe flow.
Fluid Mechanics: Topic 8.4 - Velocity profile of fully-developed laminar flow in pipes.
Fluid Mechanics: Topic 8.5 - Velocity profile for fully-developed turbulent flow in pipes.
Fluid Mechanics: Topic 8.6.1 - Major losses in circular pipe systems.
Fluid Mechanics: Topic 8.6.2 - The Moody chart.
Fluid Mechanics: Topic 8.6.3 - Major losses in non-circular ducts.
Fluid Mechanics: Topic 8.7 - Minor losses in pipe systems.
Fluid Mechanics: Topic 9.1 - Categories of pipe flow problems.
Fluid Mechanics: Topic 9.2 - Example of type I pipe flow problem.
Fluid Mechanics: Topic 10.1 - Lagrangian vs Eulerian descriptions of flow.
Fluid Mechanics: Topic 10.2 - The material derivative.
Fluid Mechanics: Topic 10.3 - Steamlines, streaklines, and pathlines.
Fluid Mechanics: Topic 10.4 - Kinematics of fluid elements (translation and linear deformation).
Fluid Mechanics: Topic 10.5 - Kinematics of fluid elements (shear strain, rotation, and vorticity).
Fluid Mechanics: Topic 11.1 - The continuity equation.
Taught by
CPPMechEngTutorials
Tags
Reviews
4.6 rating, based on 5 Class Central reviews
-
overall this coruse help me in understanding the concept of the fluid used in basic life and also in my uni
-
Fluid mechanics
In this course I study about fluid mechanics and the concept about which the fluid works we study about control volume control mass and other many things which is needed for the flow of a liquid we also study about pressure volume mass moment etc -
Very well explained and well calculated
Useful for my studies and development of the knowledge for me -
The course is basic and easy. Professor will explain the concepts and give examples to solve during the class as tutorial assignments. The exams are more focused on conceptual and theoretical questions, including some questions on proving theorems. There are some numerical and objective questions as well. Exams are based on whatever is taught in class and given in lecture slides
-
It really helped a lot. I got to understand the importance of fluids and it's streams.I learned all the derivations and types of pressure acting on the fluid flows,also I learned the major looses in the pipes and minor losses in the pipes these losses helped me to calculate the flow of fluid according to the streams.