Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

openHPI

Praktische Einführung in Deep Learning für Computer Vision

via openHPI

Overview

Über “Neuronale Netze”, “Artificial Intelligence” und “Deep Learning” reden heute alle. Jeder möchte künstliche Intelligenz nutzen, doch wie fange ich am besten damit an?

In diesem Kurs werden wir künstliche neuronale Netze, die Grundlage künstlicher Intelligenz, sowohl theoretisch als auch praktisch einführen. Dabei wollen wir genauer untersuchen, wie solche Netze funktionieren und wie man sie entwickeln und einsetzen kann. Der Kurs beinhaltet theoretische Grundlagen, praktische Übungen und weiterführende Exkurse, unter anderem in die Algorithmen, welche zum Trainieren von neuronalen Netzen verwendet werden. Anschließend werden wir lernen, wie ein Netz für verschiedene Einsatzzwecke optimiert werden kann und wie wir auch mit wenig Trainingsdaten Erfolge erzielen können. Am Ende zeigen wir, wie ihr selbst ein gutes Netz für ein eigenes Problem trainieren könnt.

Ziel des Kurses ist es, ein Verständnis von künstlichen neuronalen Netzen und deren Einsatz- und Optimierungsmöglichkeiten zu schaffen.

 

 

Syllabus

Woche 1:
 In der ersten Woche dieses Kurses wollen wir eine Einführung in die Grundlagen künstlicher neuronaler Netze geben. Wir werden zunächst die Möglichkeiten und Limitationen dieses Berechnungsmodells gegenüber traditioneller Algorithmik aufzeigen. Zudem wollen wir den Bezug zu biologischen neuronalen Netzen herstellen und genau verstehen, was sich hinter dem Begriff verbirgt. Außerdem werden wir uns den Aufbau und die Lernfähigkeit von künstlichen neuronalen Netzen herleiten.

Woche 2:
 In der zweiten Kurswoche stellen wir verschiedene Tools vor, die ihr für die Implementierung neuronaler Netze benötigt werden. Darunter fallen Numpy zur Berechnung von Matrizenoperationen, Matplotlib um Diagramme zu erstellen und Tensorflow / Keras für die Implementierung neuronaler Netze. Außerdem trainieren wir ein erstes neuronales Netz, welches handgeschriebene Zahlen erkennt. Darüber hinaus werdet ihr durch die praktische Übung anhand eines neuen Datensets ein einfaches neuronales Netz selbst trainieren können.

Woche 3:
 In der dritten Kurswoche gehen wir noch einmal genauer auf die Wichtigkeit guter Daten ein und steigen daraufhin tiefer in den Bereich Computer Vision ein. Wir erklären, welche Techniken speziell für die Bilderkennung in neuronales Netz verwendet werden müssen, damit wir auch hochauflösende Bilder benutzen können und wie komplexe neuronale Netze für die Bilderkennung detailliert aussehen. Somit werden wir in dieser Kurswoche die Grundlage legen um komplexe neuronale Netze so zu modifizieren, dass diese für neue Problemstellungen genutzt werden können. In dieser Woche wird es eine praktische Übung geben, in der das gelernte Wisse angewandt werden kann.

Woche 4:
 In der letzen Kurswoche geht es um die Optimierung von neuronalen Netzen. Wir schauen uns verschiedene Techniken an, die ihr benutzen könnt, um auch Netze mit sehr wenigen Bildern zu trainieren. Wir benutzen dabei einen besonders herausfordernden und hochauflösenden Bilddatensatz. Ihr lernt, wie ihr State-of-the-Art-Netze benutzen könnt, um euer die eigenen Ergebnisse zu verbessern. Mit Abschluss der Woche werdet ihr eure eigenen Probleme mit Deep Learning nutzen könnt.

Abschlussprüfung und Exkurse: 
Hier findet ihr die Abschlussprüfung und spannende Exkurse, die interessante Computer Vision Probleme erläutern. Freut euch auf Videos über Generative Adversarial Networks, Long-Short-Term Memories und Computer Vision Projekte von Anfang bis Ende.

 

Reviews

Start your review of Praktische Einführung in Deep Learning für Computer Vision

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.