Modeling and Control of Power Electronics
University of Colorado Boulder via Coursera Specialization
-
13
-
- Write review
Overview
This Specialization is intended for students and engineers seeking to advance skills in the analysis, modeling, and design of high-performance control loops around switched-mode dc-dc, ac-dc and dc-ac power converters. Through five courses, you will cover averaged-switch modeling and simulation techniques, techniques of design-oriented analysis, input filter design, peak and average current-mode control techniques, as well as modeling and control of single-phase power factor correction rectifiers, and inverters for photovoltaic power systems.
Syllabus
Course 1: Averaged-Switch Modeling and Simulation
- Offered by University of Colorado Boulder. This course can also be taken for academic credit as ECEA 5705, part of CU Boulder’s Master of ... Enroll for free.
Course 2: Techniques of Design-Oriented Analysis
- Offered by University of Colorado Boulder. This course can also be taken for academic credit as ECEA 5706, part of CU Boulder’s Master of ... Enroll for free.
Course 3: Input Filter Design
- Offered by University of Colorado Boulder. This course can also be taken for academic credit as ECEA 5707, part of CU Boulder’s Master of ... Enroll for free.
Course 4: Current-Mode Control
- Offered by University of Colorado Boulder. This course can also be taken for academic credit as ECEA 5708, part of CU Boulder’s Master of ... Enroll for free.
Course 5: Modeling and Control of Single-Phase Rectifiers and Inverters
- Offered by University of Colorado Boulder. This course can also be taken for academic credit as ECEA 5709, part of CU Boulder’s Master of ... Enroll for free.
- Offered by University of Colorado Boulder. This course can also be taken for academic credit as ECEA 5705, part of CU Boulder’s Master of ... Enroll for free.
Course 2: Techniques of Design-Oriented Analysis
- Offered by University of Colorado Boulder. This course can also be taken for academic credit as ECEA 5706, part of CU Boulder’s Master of ... Enroll for free.
Course 3: Input Filter Design
- Offered by University of Colorado Boulder. This course can also be taken for academic credit as ECEA 5707, part of CU Boulder’s Master of ... Enroll for free.
Course 4: Current-Mode Control
- Offered by University of Colorado Boulder. This course can also be taken for academic credit as ECEA 5708, part of CU Boulder’s Master of ... Enroll for free.
Course 5: Modeling and Control of Single-Phase Rectifiers and Inverters
- Offered by University of Colorado Boulder. This course can also be taken for academic credit as ECEA 5709, part of CU Boulder’s Master of ... Enroll for free.
Courses
-
This course can also be taken for academic credit as ECEA 5705, part of CU Boulder’s Master of Science in Electrical Engineering degree. This is Course #1 in the Modeling and Control of Power Electronics course sequence. The course is focused on practical design-oriented modeling and control of pulse-width modulated switched mode power converters using analytical and simulation tools in time and frequency domains. A design-oriented analysis technique known as the Middlebrook's feedback theorem is introduced and applied to analysis and design of voltage regulators and other feedback circuits. Furthermore, it is shown how circuit averaging and averaged-switch modeling techniques lead to converter averaged models suitable for hand analysis, computer-aided analysis, and simulations of converters. After completion of this course, the student will be able to practice design of high-performance control loops around switched-mode power converters using analytical and simulation techniques. We strongly recommend students complete the CU Boulder Power Electronics specialization before enrolling in this course (course numbers provided for students in CU Boulder's MS-EE program): ● Introduction to Power Electronics (ECEA 5700) ● Converter Circuits (ECEA 5701) ● Converter Control (ECEA 5702) After completing this course, you will be able to: ● Explain operation and modeling of switched-mode power converters ● Model open-loop transfer functions and frequency responses ● Design closed-loop regulated switched-mode power converters ● Verify operation of switched-mode power converters by simulations ● Understand the Feedback Theorem principles ● Apply the Feedback Theorem to practical design examples ● Derive averaged switch models of and averaged circuit models of power converters ● Apply averaged-switch modeling techniques to analysis and design and simulations of power converters
-
This course can also be taken for academic credit as ECEA 5707, part of CU Boulder’s Master of Science in Electrical Engineering degree. This is Course #3 in the Modeling and Control of Power Electronics course sequence. After completion of this course, you will gain an understanding of issues related to electromagnetic interference (EMI) and electromagnetic compatibility (EMC), the need for input filters and the effects input filters may have on converter responses. You will be able to design properly damped single and multi-section filters to meet the conducted EMI attenuation requirements without compromising frequency responses or stability of closed-loop controlled power converters. We strongly recommend students complete the CU Boulder Power Electronics specialization as well as Courses #1 (Averaged-Switch Modeling and Simulation) and #2 (Techniques of Design-Oriented Analysis) before enrolling in this course (the course numbers provided below are for students in the CU Boulder's MS-EE program): ● Introduction to Power Electronics (ECEA 5700) ● Converter Circuits (ECEA 5701) ● Converter Control (ECEA 5702) ● Averaged-Switch Modeling and Simulation (ECEA 5705) ● Techniques of Design-Oriented Analysis (ECEA 5706) After completing this course, you will be able to: ● Understand conducted electromagnetic interference (EMI) and the need for input filter ● Understand input filter design principles based on attenuation requirements and impedance interactions. ● Design properly damped single-stage input filters. ● Design properly damped multi-stage input filters. ● Use computer-aided tools and simulations to verify input filter design
-
This course can also be taken for academic credit as ECEA 5706, part of CU Boulder’s Master of Science in Electrical Engineering degree. This is Course #2 in the Modeling and Control of Power Electronics course sequence. The course is focused on techniques of design-oriented analysis that allow you to quickly gain insights into models of switching power converters and to translate these insights into practical converter designs. The design-oriented techniques covered are the Extra Element Theorem and the N-Extra Element Theorem (N-EET). Through practical examples, it is shown how the EET can be used to simplify circuit analysis, to examine the effects of initially unmodeled components, and to design damping of converters such as SEPIC and Cuk to achieve high-performance closed-loop controls. The N-EET will allow you to perform circuit analysis and to derive circuit responses with minimum algebra. Modeling and design examples are supported by design-oriented MATLAB script and Spice simulations. After completion of this course, the student will gain analytical skills applicable to the design of high-performance closed-loop controlled switching power converters. We strongly recommend students complete the CU Boulder Power Electronics specialization as well as Course #1 Averaged-Switch Modeling and Simulation before enrolling in this course (the course numbers provided below are for students in the CU Boulder's MS-EE program): ● Introduction to Power Electronics (ECEA 5700) ● Converter Circuits (ECEA 5701) ● Converter Control (ECEA 5702) ● Averaged-Switch Modeling and Simulation (ECEA 5705) After completing this course, you will be able to: ● Understand statement and derivation of the Extra Element Theorem ● Apply the Extra Element Theorem to converter analysis and design problems ● Understand the statement of the N-Extra Element Theorem ● Apply the N-Extra Element Theorem to converter analysis and design problems ● Apply techniques of design-oriented analysis to analysis, design, and simulations of switching converters
-
This course can also be taken for academic credit as ECEA 5708, part of CU Boulder’s Master of Science in Electrical Engineering degree. This is Course #4 in the Modeling and Control of Power Electronics course sequence. The course is focused on current-mode control techniques, which are very frequently applied in practical realizations of switched-mode. Practical advantages of peak current mode control are discussed, including built-in overcurrent protection, simpler and more robust dynamic responses, as well as abilities to ensure current sharing in parallel connected converter modules. For peak current-mode controlled converters, slope compensation, and high-frequency effects are discussed in detail. Upon completion of the course, you will be able to understand, analyze, model, and design high-performance current-mode controllers for dc-dc power converters, including peak current-mode controllers and average current-mode controllers. We strongly recommend students complete the CU Boulder Power Electronics specialization as well as Course #1 (Averaged-Switch Modeling and Simulation) before enrolling in this course (the course numbers provided below are for students in the CU Boulder's MS-EE program): ● Introduction to Power Electronics (ECEA 5700) ● Converter Circuits (ECEA 5701) ● Converter Control (ECEA 5702) ● Averaged-Switch Modeling and Simulation (ECEA 5705) After completing this course, you will be able to: ● Understand the operating principles and benefits of current-mode control for dc-dc converters ● Model and design peak current-mode controlled dc-dc converters ● Model and design average current-mode controlled dc-dc converters ● Use computer-aided tools and simulations to verify current-mode controlled dc-dc converters
-
This course can also be taken for academic credit as ECEA 5709, part of CU Boulder’s Master of Science in Electrical Engineering degree. This is Course #5 in the Modeling and Control of Power Electronics Specialization. The course is focused on modeling and control of grid-tied power electronics. Upon completion of the course, you will be able to understand, analyze, model, and design low-harmonic rectifiers and inverters interfacing dc loads or dc power sources, such as photovoltaic arrays, to the single-phase ac power grid. We strongly recommend students complete the CU Boulder Power Electronics Specialization as well as Courses #1 (Averaged-Switch Modeling and Simulation) and #4 (Current-Mode Control) before enrolling in this course (the course numbers provided below are for students in the CU Boulder's MS-EE program): ● Introduction to Power Electronics (ECEA 5700) ● Converter Circuits (ECEA 5701) ● Converter Control (ECEA 5702) ● Averaged-Switch Modeling and Simulation (ECEA 5705) ● Current-Mode Control (ECEA 5708) After completing this course, you will be able to: ● Understand the operating principles of low-harmonic, high power factor rectifier and inverters ● Model and design current shaping and voltage control loops in power factor correction (PFC) rectifiers ● Model and design control loops in single-phase dc-to-ac inverters ● Design photovoltaic power systems tied to the single-phase ac power grid ● Use computer-aided tools and simulations to verify the design of rectifiers and inverters
Taught by
Dr. Dragan Maksimovic