Overview
This course can also be taken for academic credit as ECEA 5708, part of CU Boulder’s Master of Science in Electrical Engineering degree.
This is Course #4 in the Modeling and Control of Power Electronics course sequence. The course is focused on current-mode control techniques, which are very frequently applied in practical realizations of switched-mode. Practical advantages of peak current mode control are discussed, including built-in overcurrent protection, simpler and more robust dynamic responses, as well as abilities to ensure current sharing in parallel connected converter modules. For peak current-mode controlled converters, slope compensation, and high-frequency effects are discussed in detail. Upon completion of the course, you will be able to understand, analyze, model, and design high-performance current-mode controllers for dc-dc power converters, including peak current-mode controllers and average current-mode controllers.
We strongly recommend students complete the CU Boulder Power Electronics specialization as well as Course #1 (Averaged-Switch Modeling and Simulation) before enrolling in this course (the course numbers provided below are for students in the CU Boulder's MS-EE program):
● Introduction to Power Electronics (ECEA 5700)
● Converter Circuits (ECEA 5701)
● Converter Control (ECEA 5702)
● Averaged-Switch Modeling and Simulation (ECEA 5705)
After completing this course, you will be able to:
● Understand the operating principles and benefits of current-mode control for dc-dc converters
● Model and design peak current-mode controlled dc-dc converters
● Model and design average current-mode controlled dc-dc converters
● Use computer-aided tools and simulations to verify current-mode controlled dc-dc converters
Syllabus
- Peak Current-Mode Control: Simple Model
- Introduction to peak current-mode control, simple model, and the need for slope compensation
- Peak Current-Mode Control: More Accurate Model
- More accurate averaged model, averaged circuit simulations, and design of control loops
- High-Frequency Effects in Peak Current-Mode Control
- Introduction to the sampled-data nature of switching converters and high-frequency effects in peak current-mode controlled converters
- Average Current-Mode Control
- Averaged current-mode control and design of current and voltage control loops
Taught by
Dr. Dragan Maksimovic