Применение методов ML помогает банку более оперативно принимать решения. Сможет ли вернуть кредит конкретный клиент? Как изменится объем вкладов и кредитов в ближайшей перспективе? Как оптимизировать внутренние процессы? Эти и многие другие проблемы финансовой сферы помогают решать на практике передовые методы ML.
Если вы студент и видите свое будущее в ML в финансах, но еще не до конца понимаете, чем будете заниматься; или уже работаете в банковской/IT сфере и хотите улучшить свои знания и квалификацию, а может быть, вы просто активно интересуетесь последними тенденциями применения ML — добро пожаловать на онлайн-курс «Машинное обучение в финансах» от команды финансистов Сбербанка!
Наш курс практико-ориентированный: вы узнаете о внедрении и применении ML на примере трейдинга, прогнозировании операционного дохода банка, автоматизации внутренних процессов и др., а также пройдете несколько практических заданий с использованием языка программирования Python. На второй неделе курса используется вероятностный язык программирования Stan. В лекциях и домашних заданиях по прогнозированию представлены базовые примеры моделей в Stan и ссылки на более детальное ознакомление с языком. Освоив эту программу, слушатель научится применять на практике многие методы ML и получит конкурентное преимущество для трудоустройства в финансовой и IT сфере.