Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Delft University of Technology

Machine Learning for Semiconductor Quantum Devices

Delft University of Technology via edX

Overview

Quantum computing is a fast-growing technology and semiconductor chips are one of the most promising platforms for quantum devices.
The current bottleneck for scaling is the ability to control semiconductor computing chips quickly and efficiently.

This course, aimed at students with experience equivalent to a master’s degree in physics, computer science or electrical engineering introduces hands-on machine learning examples for the application of machine learning in the field of semiconductor quantum devices. Examples include coarse tuning into the correct quantum dot regime, specific charge state tuning, fine tuning and unsupervised quantum dot data analysis.

After the completion of the course students will be able to

  1. assess the suitability of machine learning for specific qubit tuning or control task and
  2. implement a machine learning prototype that is ready to be embedded into their experimental or theoretical quantum research and engineering workflow.

Syllabus

Week 0: Introduction to the course and self-study of the prerequisites

Week 1: Supervised learning for quantum dot configuration tuning

  • Review of neural networks
  • Formulate configuration tuning as a neural network learning task
  • Applicability for quantum experiments
  • Coding demonstration: Supervised supervised neural network configuration classification

Week 2: Charge tuning with neural networks

  • Introduction to charge tuning
  • Tuning to specific charge states as supervised neural network with feedback loop
  • Experimental charge tuning
  • Coding demonstration: Charge charge state preparation using neural network with feedback loop
  • Midterm exam (multiple choice)

Week 3: Unsupervised learning for analysis of quantum dot data

  • Introduction to unsupervised learning
  • Clustering methods for analysis of charge stability diagrams
  • Outlook and applicability to experimental systems
  • Coding demonstration: kernel-PCA clustering of charge stability data

Week 4: Fine-tuning with neural networks

  • Introduction to fine-tuning
  • Fine Fine-tuning as a Hamiltonian learning problem
  • Experimental fine-tuning
  • Coding demonstration: Hamiltonian learning for qubit characterization

Week 5: Conclusion and Recap

  • Overview of the techniques and applications
  • Outlook for artificial intelligence as a tool for control and calibration of quantum devices
  • Final exam - multiple choice and optional project (video brief) with a forum for questions

Taught by

Eliška Greplová

Reviews

Start your review of Machine Learning for Semiconductor Quantum Devices

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.