Improve your Python data importing skills and learn to work with web and API data.
As a data scientist, you will need to clean data, wrangle and munge it, visualize it, build predictive models and interpret these models. Before you can do so, however, you will need to know how to get data into Python. In the prequel to this course, you learned many ways to import data into Python: from flat files such as .txt and .csv; from files native to other software such as Excel spreadsheets, Stata, SAS, and MATLAB files; and from relational databases such as SQLite and PostgreSQL. In this course, you'll extend this knowledge base by learning to import data from the web and by pulling data from Application Programming Interfaces— APIs—such as the Twitter streaming API, which allows us to stream real-time tweets.
As a data scientist, you will need to clean data, wrangle and munge it, visualize it, build predictive models and interpret these models. Before you can do so, however, you will need to know how to get data into Python. In the prequel to this course, you learned many ways to import data into Python: from flat files such as .txt and .csv; from files native to other software such as Excel spreadsheets, Stata, SAS, and MATLAB files; and from relational databases such as SQLite and PostgreSQL. In this course, you'll extend this knowledge base by learning to import data from the web and by pulling data from Application Programming Interfaces— APIs—such as the Twitter streaming API, which allows us to stream real-time tweets.