Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Unlock the full potential of PyTorch with this comprehensive course designed for advanced users. Starting with Recommender Systems, you’ll explore how to build and evaluate these models, incorporating user and item information to enhance recommendations. Moving on to Autoencoders, the course guides you through their fundamentals and practical implementation, providing a solid foundation for dimensionality reduction and data compression tasks.
Generative Adversarial Networks (GANs) are covered next, where you’ll learn to implement and apply GANs to various scenarios, sharpening your skills in creating realistic data simulations. The course also delves into Graph Neural Networks (GNNs), teaching you to handle graph data for tasks like node classification. You’ll then explore the Transformers architecture, including its adaptation for vision tasks with Vision Transformers (ViT), providing you with the skills to tackle complex sequence and vision problems.
In addition to model building, the course emphasizes PyTorch Lightning for streamlined model development and early stopping techniques to optimize training. Semi-supervised learning methods are also covered, helping you leverage both labeled and unlabeled data for improved model performance. The extensive Natural Language Processing (NLP) section ensures you master word embeddings, sentiment analysis, and advanced techniques like zero-shot classification. The course concludes with essential topics in model deployment, using frameworks like Flask and Google Cloud to bring your models to production.
This course is designed for data scientists, machine learning engineers, and AI researchers with a solid foundation in PyTorch. Prerequisites include a strong understanding of machine learning fundamentals, proficiency in Python programming, and prior experience with PyTorch.