Completed
Conclusions
Class Central Classrooms beta
YouTube videos curated by Class Central.
Classroom Contents
Real-Time Gravitational-Wave Parameter Estimation Using Machine Learning
Automatically move to the next video in the Classroom when playback concludes
- 1 Introduction to parameter estimation
- 2 Sampling
- 3 Challenges
- 4 Simulation-based inference
- 5 Normalizing flow
- 6 Simulation-based training
- 7 Embedding network
- 8 Group equivariant neural posterior estimation
- 9 Importance of method validation
- 10 Amortized inference
- 11 Quantitative comparison vs standard sampler
- 12 Summary comparison
- 13 Conclusions
- 14 Outlook