Real-Time Gravitational-Wave Parameter Estimation Using Machine Learning

Real-Time Gravitational-Wave Parameter Estimation Using Machine Learning

Institute for Pure & Applied Mathematics (IPAM) via YouTube Direct link

Group equivariant neural posterior estimation

8 of 14

8 of 14

Group equivariant neural posterior estimation

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Real-Time Gravitational-Wave Parameter Estimation Using Machine Learning

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Introduction to parameter estimation
  2. 2 Sampling
  3. 3 Challenges
  4. 4 Simulation-based inference
  5. 5 Normalizing flow
  6. 6 Simulation-based training
  7. 7 Embedding network
  8. 8 Group equivariant neural posterior estimation
  9. 9 Importance of method validation
  10. 10 Amortized inference
  11. 11 Quantitative comparison vs standard sampler
  12. 12 Summary comparison
  13. 13 Conclusions
  14. 14 Outlook

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.