Statistical Inference for Networks - Professor Gesine Reinert, University of Oxford

Statistical Inference for Networks - Professor Gesine Reinert, University of Oxford

Alan Turing Institute via YouTube Direct link

maximum likelihood estimator

25 of 35

25 of 35

maximum likelihood estimator

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Statistical Inference for Networks - Professor Gesine Reinert, University of Oxford

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Introduction
  2. 2 Outline
  3. 3 Reading list
  4. 4 What are networks
  5. 5 Marriage network
  6. 6 London network
  7. 7 Example networks
  8. 8 Research questions
  9. 9 Network summaries
  10. 10 Degree distribution
  11. 11 Local clustering coefficient
  12. 12 Global clustering coefficient
  13. 13 Expected clustering coefficient
  14. 14 Shortest distance
  15. 15 Motifs
  16. 16 Other measures
  17. 17 Mathematical models
  18. 18 Via networks
  19. 19 Power law
  20. 20 preferential attachment
  21. 21 stochastic block model
  22. 22 degrees
  23. 23 special models
  24. 24 maximum likelihood
  25. 25 maximum likelihood estimator
  26. 26 method of moments
  27. 27 duplication divergence model
  28. 28 log log plot
  29. 29 log plot example
  30. 30 Markov chain
  31. 31 Testing the model
  32. 32 Complications
  33. 33 General framework
  34. 34 Other topics
  35. 35 Sampling

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.