Completed
Twitters Quest for Holy Grail
Class Central Classrooms beta
YouTube videos curated by Class Central.
Classroom Contents
Performance Tuning Twitter Services with Graal and Machine Learning
Automatically move to the next video in the Classroom when playback concludes
- 1 Intro
- 2 Performance tuning
- 3 Performance tuning internal
- 4 Bayesian optimization
- 5 How Bayesian optimization works
- 6 What does it do
- 7 How it finds
- 8 Optimality
- 9 Autotune
- 10 What is Autotune
- 11 What is Graal
- 12 Open JDK
- 13 Inlining parameters
- 14 Twitters Quest for Holy Grail
- 15 PS scavenge cycles
- 16 User CPU time
- 17 Ranges
- 18 Test setup
- 19 Objective
- 20 Constraints
- 21 Experiments
- 22 Results
- 23 Results Table
- 24 Results Chart
- 25 Maximum Landing Site
- 26 Low Level Graph
- 27 Verification Experiment
- 28 Data Visualization
- 29 CPU Time
- 30 Latency
- 31 Performance improvements
- 32 Experiment 2 Social Graph
- 33 Experiment 3 Social Graph
- 34 Experiment 4 Orange Control
- 35 Experiment 4 Results
- 36 Verification Run
- 37 Social Graph
- 38 Autotune Social Graph
- 39 Autotune parameters
- 40 Inlining
- 41 Evaluation
- 42 Outcome
- 43 Max in line size
- 44 Inline small code
- 45 Autotuned