Performance Tuning Twitter Services with Graal and Machine Learning

Performance Tuning Twitter Services with Graal and Machine Learning

Devoxx via YouTube Direct link

Bayesian optimization

4 of 45

4 of 45

Bayesian optimization

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Performance Tuning Twitter Services with Graal and Machine Learning

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Intro
  2. 2 Performance tuning
  3. 3 Performance tuning internal
  4. 4 Bayesian optimization
  5. 5 How Bayesian optimization works
  6. 6 What does it do
  7. 7 How it finds
  8. 8 Optimality
  9. 9 Autotune
  10. 10 What is Autotune
  11. 11 What is Graal
  12. 12 Open JDK
  13. 13 Inlining parameters
  14. 14 Twitters Quest for Holy Grail
  15. 15 PS scavenge cycles
  16. 16 User CPU time
  17. 17 Ranges
  18. 18 Test setup
  19. 19 Objective
  20. 20 Constraints
  21. 21 Experiments
  22. 22 Results
  23. 23 Results Table
  24. 24 Results Chart
  25. 25 Maximum Landing Site
  26. 26 Low Level Graph
  27. 27 Verification Experiment
  28. 28 Data Visualization
  29. 29 CPU Time
  30. 30 Latency
  31. 31 Performance improvements
  32. 32 Experiment 2 Social Graph
  33. 33 Experiment 3 Social Graph
  34. 34 Experiment 4 Orange Control
  35. 35 Experiment 4 Results
  36. 36 Verification Run
  37. 37 Social Graph
  38. 38 Autotune Social Graph
  39. 39 Autotune parameters
  40. 40 Inlining
  41. 41 Evaluation
  42. 42 Outcome
  43. 43 Max in line size
  44. 44 Inline small code
  45. 45 Autotuned

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.