Jacob Lurie: A Riemann-Hilbert Correspondence in P-adic Geometry Part 2

Jacob Lurie: A Riemann-Hilbert Correspondence in P-adic Geometry Part 2

Hausdorff Center for Mathematics via YouTube Direct link

Explicit Description

14 of 21

14 of 21

Explicit Description

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Jacob Lurie: A Riemann-Hilbert Correspondence in P-adic Geometry Part 2

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Intro
  2. 2 The Classical Riemann-Hilbert Correpondence
  3. 3 Constructible Sheaves
  4. 4 The Frobenius
  5. 5 Overview
  6. 6 Étale Sheaves on a Point
  7. 7 Finiteness
  8. 8 Algebraic Frobenius Modules
  9. 9 Katz's Theorem
  10. 10 A Generalization
  11. 11 Some Analogies
  12. 12 Analogy with the de Rham Complex
  13. 13 Computing Cohomology with the Artin-Schreier Sequenc
  14. 14 Explicit Description
  15. 15 Relationship with the de Rham Functor
  16. 16 Properties of the Riemann-Hilbert Functor
  17. 17 An Example
  18. 18 Unit Frobenius Modules
  19. 19 Relationship with Flat Connections
  20. 20 The Riemann-Hilbert Correspondence of Emerton-Kisin
  21. 21 Comparison of Riemann-Hilbert Correspondences

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.