Jacob Lurie: A Riemann-Hilbert Correspondence in P-adic Geometry Part 2

Jacob Lurie: A Riemann-Hilbert Correspondence in P-adic Geometry Part 2

Hausdorff Center for Mathematics via YouTube Direct link

Intro

1 of 21

1 of 21

Intro

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Jacob Lurie: A Riemann-Hilbert Correspondence in P-adic Geometry Part 2

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Intro
  2. 2 The Classical Riemann-Hilbert Correpondence
  3. 3 Constructible Sheaves
  4. 4 The Frobenius
  5. 5 Overview
  6. 6 Étale Sheaves on a Point
  7. 7 Finiteness
  8. 8 Algebraic Frobenius Modules
  9. 9 Katz's Theorem
  10. 10 A Generalization
  11. 11 Some Analogies
  12. 12 Analogy with the de Rham Complex
  13. 13 Computing Cohomology with the Artin-Schreier Sequenc
  14. 14 Explicit Description
  15. 15 Relationship with the de Rham Functor
  16. 16 Properties of the Riemann-Hilbert Functor
  17. 17 An Example
  18. 18 Unit Frobenius Modules
  19. 19 Relationship with Flat Connections
  20. 20 The Riemann-Hilbert Correspondence of Emerton-Kisin
  21. 21 Comparison of Riemann-Hilbert Correspondences

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.