Completed
Lecture 4.1 - DC Motor Control Regions and Principles of Power Electronics
Class Central Classrooms beta
YouTube videos curated by Class Central.
Classroom Contents
Introduction to Robotics
Automatically move to the next video in the Classroom when playback concludes
- 1 Introduction - Introduction to Robotics
- 2 Lecture 1.1 - Introduction
- 3 Lecture - 1.2 - Evolution of Robotics
- 4 Lecture - 2 .1 - Kinematics- Coordinate transformations
- 5 Lecture - 2.2 - Homogeneus Transformation Matrix
- 6 Lecture - 2.3 - Industrial Robot- Kinematic Structures
- 7 Lecture - 2.4 - Robot Architectures
- 8 Lecture - 2.5 - Kinematic Parameters
- 9 Lecture - 2.6 - DH Algorithm
- 10 Lecture - 2.7 - DH Algorithm
- 11 Lecture - 2.8 - Forward Kinematics
- 12 Lecture - 2.9 - Forward Kinematics- Examples
- 13 Lecture - 2.10 -Inverse Kinematics
- 14 Lecture - 2.11 - Inverse Kinematics- Examples
- 15 Lecture - 2.12 - Differential Relations
- 16 Lecture - 2.13 - Manipulator Jacobian and Statics
- 17 Lecture - 3.1 Overview of Electric Actuators and Operational Needs
- 18 Lecture 3.2 - Principles of DC Motor Operation
- 19 Lecture 3.3 - DC Motor Equations and Principles of Control
- 20 Lecture 4.1 - DC Motor Control Regions and Principles of Power Electronics
- 21 Lecture 4.2 - Power Electronic Switching and Current Ripple
- 22 Lecture 4.3 - The H-Bridge and DC Motor Control Structure
- 23 Lecture 5.1 - The Brushless DC Machine
- 24 Lecture 5.2 - Control of the Brushless DC Motor
- 25 Lecture 5.3 - The PM Synchronous Motor (PMSM) and SPWM
- 26 Lecture 6.1 - Principles of PMSM Control
- 27 Lecture 6.2 - Encoders for Speed and Position Estimation
- 28 Lecture 6.3 - Stepper Motors
- 29 Lecture 7.1 - Introduction to Probabilistic Robotics.
- 30 Lecture 7.2 - Recursive State Estimation: Bayes Filter
- 31 Lecture 7.3 - Recursive State Estimation: Bayes Filter Illustration.
- 32 Tutorial - 1 Probability Basics
- 33 Tutorial - 2 Probability Basics
- 34 Lecture 8.1 - Kalman Filter
- 35 Lecture 8.2 - Extended Kalman Filter
- 36 Lecture 8.3 - Particle Filter
- 37 Lecture 8.4 - Binary Bayes
- 38 Lecture - 9.1 Velocity Motion Model
- 39 Lecture - 9.2 Odometry Motion Model
- 40 Lecture - 9.3 Occupa Grid Mapping
- 41 Lecture 9.4 - Range Finder Measurement Model
- 42 Lecture 10.1 - Localization Taxonomy
- 43 Lecture 10.2 - Markov Localization
- 44 Lecture 10.3 - Path Planning