Introduction to Robotics

Introduction to Robotics

NPTEL-NOC IITM via YouTube Direct link

Lecture - 1.2 - Evolution of Robotics

3 of 44

3 of 44

Lecture - 1.2 - Evolution of Robotics

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Introduction to Robotics

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Introduction - Introduction to Robotics
  2. 2 Lecture 1.1 - Introduction
  3. 3 Lecture - 1.2 - Evolution of Robotics
  4. 4 Lecture - 2 .1 - Kinematics- Coordinate transformations
  5. 5 Lecture - 2.2 - Homogeneus Transformation Matrix
  6. 6 Lecture - 2.3 - Industrial Robot- Kinematic Structures
  7. 7 Lecture - 2.4 - Robot Architectures
  8. 8 Lecture - 2.5 - Kinematic Parameters
  9. 9 Lecture - 2.6 - DH Algorithm
  10. 10 Lecture - 2.7 - DH Algorithm
  11. 11 Lecture - 2.8 - Forward Kinematics
  12. 12 Lecture - 2.9 - Forward Kinematics- Examples
  13. 13 Lecture - 2.10 -Inverse Kinematics
  14. 14 Lecture - 2.11 - Inverse Kinematics- Examples
  15. 15 Lecture - 2.12 - Differential Relations
  16. 16 Lecture - 2.13 - Manipulator Jacobian and Statics
  17. 17 Lecture - 3.1 Overview of Electric Actuators and Operational Needs
  18. 18 Lecture 3.2 - Principles of DC Motor Operation
  19. 19 Lecture 3.3 - DC Motor Equations and Principles of Control
  20. 20 Lecture 4.1 - DC Motor Control Regions and Principles of Power Electronics
  21. 21 Lecture 4.2 - Power Electronic Switching and Current Ripple
  22. 22 Lecture 4.3 - The H-Bridge and DC Motor Control Structure
  23. 23 Lecture 5.1 - The Brushless DC Machine
  24. 24 Lecture 5.2 - Control of the Brushless DC Motor
  25. 25 Lecture 5.3 - The PM Synchronous Motor (PMSM) and SPWM
  26. 26 Lecture 6.1 - Principles of PMSM Control
  27. 27 Lecture 6.2 - Encoders for Speed and Position Estimation
  28. 28 Lecture 6.3 - Stepper Motors
  29. 29 Lecture 7.1 - Introduction to Probabilistic Robotics.
  30. 30 Lecture 7.2 - Recursive State Estimation: Bayes Filter
  31. 31 Lecture 7.3 - Recursive State Estimation: Bayes Filter Illustration.
  32. 32 Tutorial - 1 Probability Basics
  33. 33 Tutorial - 2 Probability Basics
  34. 34 Lecture 8.1 - Kalman Filter
  35. 35 Lecture 8.2 - Extended Kalman Filter
  36. 36 Lecture 8.3 - Particle Filter
  37. 37 Lecture 8.4 - Binary Bayes
  38. 38 Lecture - 9.1 Velocity Motion Model
  39. 39 Lecture - 9.2 Odometry Motion Model
  40. 40 Lecture - 9.3 Occupa Grid Mapping
  41. 41 Lecture 9.4 - Range Finder Measurement Model
  42. 42 Lecture 10.1 - Localization Taxonomy
  43. 43 Lecture 10.2 - Markov Localization
  44. 44 Lecture 10.3 - Path Planning

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.