About this course
This 5th edition of the MOOC starts on March 2, 2020.
Exploratory multivariate data analysis is studied and teached in a French-way since a long time in France. This course focuses on four essential and basic methods, those with the largest potential in terms of applications: principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical and clustering. An extension to Multiple Factor Analysis (MFA) will give you the opportunity to analyse more complex dataset that are structured by groups.
This course is application-oriented; formalism and mathematics writing have been reduced as much as possible while examples and intuition have been emphasized and the numerous exercises done with FactoMineR (a package of the free R software) will make the participant efficient and reliable face to data analysis.
We hope that with this course, the participant will be fully equipped (theory, examples, software) to confront multivariate real-life data.