Descripción de curso
Gracias por tu interés. Aunque este MOOC ya se realizó, si te inscribes podrás acceder a los contenidos más importantes y a los vídeos. Sin embargo, no podrás realizar ninguna de las actividades ni te podrás certificar. Cuando esté disponible una nueva edición podrás inscribirte para que obtengas la experiencia completa de un MOOC de Miríadax.
The main target of this course is introducing the student to some themes in the philosophical literature about the sorites paradox and the Liar paradox as well as to some logical developments connected to them. More specifically, with this course we expect the students to reach the following goals: (i) knowing the philosophical significance of the sorites paradox and of the Liar paradox, (ii) knowing some basic reactions to the sorites paradox and to the Liar paradox. (iii) acquiring familiarity with the logics K3, LP and ST. (iv) mastering the concepts of paracompleteness, paraconsistency and duality. (v) acquiring familiarity with the use of multiple conclusions. (vi) mastering the tableaux technique to construct proofs for classical propositional logic, K3, LP, ST.
Gracias por tu interés. Aunque este MOOC ya se realizó, si te inscribes podrás acceder a los contenidos más importantes y a los vídeos. Sin embargo, no podrás realizar ninguna de las actividades ni te podrás certificar. Cuando esté disponible una nueva edición podrás inscribirte para que obtengas la experiencia completa de un MOOC de Miríadax.
The main target of this course is introducing the student to some themes in the philosophical literature about the sorites paradox and the Liar paradox as well as to some logical developments connected to them. More specifically, with this course we expect the students to reach the following goals: (i) knowing the philosophical significance of the sorites paradox and of the Liar paradox, (ii) knowing some basic reactions to the sorites paradox and to the Liar paradox. (iii) acquiring familiarity with the logics K3, LP and ST. (iv) mastering the concepts of paracompleteness, paraconsistency and duality. (v) acquiring familiarity with the use of multiple conclusions. (vi) mastering the tableaux technique to construct proofs for classical propositional logic, K3, LP, ST.