Комбинаторика - это наука, которая, с одной стороны, богата исключительно красивыми постановками задач, зачастую доступными школьнику, а с другой стороны, это очень глубокая современная область знаний, без овладения инструментами которой невозможно серьезное понимание как большинства других фундаментальных дисциплин - анализа, алгебры, теории графов, теории вероятностей и др., - так и многих прикладных проблем.
Современная комбинаторика, таким образом, это своего рода основа основ: это и красивейшая теория с массой нетривиальных задач и методов, но это и прекрасная база для приложений в computer science, в анализе сложных сетей, в теории кодирования и криптографии, в биоинформатике и др. В курсе мы познакомим слушателей с наиболее важными областями и инструментами современной комбинаторики, причем многие темы курса по сути уникальны: здесь не только классические комбинаторные величины и тождества, но также и общая теория обращения Мебиуса, и диаграммы Юнга, и рекурсия, и производящие функции. Это позволит нам в дальнейших курсах выйти на реальные приложения в анализе таких сложных сетей, как Интернет, социальные, биологические сети, сети межбанковских взаимодействий и др.
Для участия в курсе слушателю необходимо иметь базовые представления о теории множеств и началах анализа. Все остальные понятия будут введены в ходе курса.
Курс состоит из 7 недель лекций и 1 недели экзамена. Каждую неделю слушатель выполняет задания, составляющие 10% от всего курса (5% тест и 5% задачи с ответом). Экзамен также состоит из теста и задач с ответом, каждая часть оценивается в 15% от общей суммы. Для успешного прохождения курса необходимо в каждом задании набрать не менее 50% от общего числа баллов.
Данный курс рекомендуется к прохождению перед курсом Теория вероятностей.
Современная комбинаторика, таким образом, это своего рода основа основ: это и красивейшая теория с массой нетривиальных задач и методов, но это и прекрасная база для приложений в computer science, в анализе сложных сетей, в теории кодирования и криптографии, в биоинформатике и др. В курсе мы познакомим слушателей с наиболее важными областями и инструментами современной комбинаторики, причем многие темы курса по сути уникальны: здесь не только классические комбинаторные величины и тождества, но также и общая теория обращения Мебиуса, и диаграммы Юнга, и рекурсия, и производящие функции. Это позволит нам в дальнейших курсах выйти на реальные приложения в анализе таких сложных сетей, как Интернет, социальные, биологические сети, сети межбанковских взаимодействий и др.
Для участия в курсе слушателю необходимо иметь базовые представления о теории множеств и началах анализа. Все остальные понятия будут введены в ходе курса.
Курс состоит из 7 недель лекций и 1 недели экзамена. Каждую неделю слушатель выполняет задания, составляющие 10% от всего курса (5% тест и 5% задачи с ответом). Экзамен также состоит из теста и задач с ответом, каждая часть оценивается в 15% от общей суммы. Для успешного прохождения курса необходимо в каждом задании набрать не менее 50% от общего числа баллов.
Данный курс рекомендуется к прохождению перед курсом Теория вероятностей.