How did Newton describe the orbits of the planets? To do this, he created calculus. But he used a different coordinate system more appropriate for planetary motion. We will learn to shift our perspective to do calculus with parameterized curves and polar coordinates. And then we will dive deep into exploring the infinite to gain a deeper understanding and powerful descriptions of functions.
How does a computer make accurate computations? Absolute precision does not exist in the real world, and computers cannot handle infinitesimals or infinity. Fortunately, just as we approximate numbers using the decimal system, we can approximate functions using series of much simpler functions. These approximations provide a powerful framework for scientific computing and still give highly accurate results. They allow us to solve all sorts of engineering problems based on models of our world represented in the language of calculus.
- Changing Perspectives
- Parametric Equations
- Polar Coordinates
- Series and Polynomial Approximations
- Series and Convergence
- Taylor Series and Power Series
The three modules in this series are being offered as an XSeries on edX. Please visit Single Variable Calculus XSeries Program Page to learn more and to enroll in the modules.
This course, in combination with Parts 1 and 2, covers the AP* Calculus BC curriculum.
Learn more about our High School and AP* Exam Preparation Courses
This course was funded in part by the Wertheimer Fund.
*Advanced Placement and AP are registered trademarks of the College Board, which was not involved in the production of, and does not endorse, these offerings.
---
Please note: edX Inc. has recently entered into an agreement to transfer the edX platform to 2U, Inc., which will continue to run the platform thereafter. The sale will not affect your course enrollment, course fees or change your course experience for this offering. It is possible that the closing of the sale and the transfer of the edX platform may be effectuated sometime in the Fall while this course is running. Please be aware that there could be changes to the edX platform Privacy Policy or Terms of Service after the closing of the sale. However, 2U has committed to preserving robust privacy of individual data for all learners who use the platform. For more information see the edX Help Center.