Business analytics and data mining Modeling using R
Indian Institute of Technology Roorkee and NPTEL via Swayam
-
191
-
- Write review
Overview
Objective of this course is to impart knowledge on use of data mining techniques for deriving business intelligence to achieve organizational goals. Use of R (statistical computingCSS - MOOCs Proposal software) to build, assess, and compare models based on real datasets and cases with an easy-to-follow learning curve. INTENDED AUDIENCE : NILL PREREQUISITES : Basic Statistics Knowledge INDUSTRY SUPPORT : Big Data companies, Analytics & Consultancy companies, Companies with Analytics Division
Syllabus
Week1:General Overview of Data Mining and its Components Introduction and Data Mining Process Introduction to R Basic Statistical Techniques
Week2:Data Preparation and Exploration Visualization Techniques
Week3:Data Preparation and Exploration Visualization Techniques Dimension Reduction Techniques Principal Component Analysis
Week4:Performance Metrics and Assessment Performance Metrics for Prediction and Classification
Week5:Supervised Learning Methods Multiple Linear Regression
Week6:Supervised Learning Methods Multiple Linear Regression
Week7:Supervised Learning Methods Naà ̄ve Bayes
Week8:Supervised Learning Methods Classification & Regression Trees
Week9:Supervised Learning Methods Classification & Regression Trees
Week10:Supervised Learning Methods Logistic Regression
Week11:Supervised Learning Methods Logistic Regression Artificial Neural Networks
Week12:Supervised Learning Methods and Wrap Up Artificial Neural Networks Discriminant Analysis Conclusion
Week2:Data Preparation and Exploration Visualization Techniques
Week3:Data Preparation and Exploration Visualization Techniques Dimension Reduction Techniques Principal Component Analysis
Week4:Performance Metrics and Assessment Performance Metrics for Prediction and Classification
Week5:Supervised Learning Methods Multiple Linear Regression
Week6:Supervised Learning Methods Multiple Linear Regression
Week7:Supervised Learning Methods Naà ̄ve Bayes
Week8:Supervised Learning Methods Classification & Regression Trees
Week9:Supervised Learning Methods Classification & Regression Trees
Week10:Supervised Learning Methods Logistic Regression
Week11:Supervised Learning Methods Logistic Regression Artificial Neural Networks
Week12:Supervised Learning Methods and Wrap Up Artificial Neural Networks Discriminant Analysis Conclusion
Taught by
Gaurav Dixit