Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Canonical Weierstrass Representation of Minimal Lorentz Surfaces in Pseudo-Euclidean 4-Space with Neutral Metric

IMSA via YouTube

Overview

Explore the canonical Weierstrass representation of minimal Lorentz surfaces in pseudo-Euclidean 4-space with neutral metric in this 42-minute lecture. Delve into the properties of minimal Lorentz surfaces of general type, including their special isothermal parameters and the system of natural partial differential equations governing their Gauss and normal curvatures. Learn how to obtain a Weierstrass representation for these surfaces using canonical parameters, and discover how to describe them in terms of four real functions. Examine the explicit solution to the system of equations and study examples of minimal Lorentz surfaces of general type in E4_2 parametrized by canonical parameters. Gain insights into advanced topics in differential geometry and minimal surface theory as presented by a researcher from the Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences.

Syllabus

Velichka Milousheva, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Taught by

IMSA

Reviews

Start your review of Canonical Weierstrass Representation of Minimal Lorentz Surfaces in Pseudo-Euclidean 4-Space with Neutral Metric

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.