Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Unsupervised Learning

Serrano.Academy via YouTube

Overview

Dive into the world of unsupervised learning through a comprehensive 4.5-hour tutorial covering a wide range of advanced topics. Explore Gaussian Mixture Models, clustering techniques like K-means and Hierarchical clustering, and Principal Component Analysis (PCA). Discover the inner workings of recommendation systems using Matrix Factorization, and delve into Latent Dirichlet Allocation with a two-part explanation including Gibbs Sampling. Gain insights into Restricted Boltzmann Machines, learn about Singular Value Decomposition and its application in image compression, and understand Denoising and Variational Autoencoders. Conclude with a friendly introduction to Generative Adversarial Networks (GANs), equipping yourself with cutting-edge knowledge in unsupervised learning techniques.

Syllabus

Gaussian Mixture Models.
Clustering: K-means and Hierarchical.
Principal Component Analysis (PCA).
How does Netflix recommend movies? Matrix Factorization.
Latent Dirichlet Allocation (Part 1 of 2).
Training Latent Dirichlet Allocation: Gibbs Sampling (Part 2 of 2).
Restricted Boltzmann Machines (RBM) - A friendly introduction.
Singular Value Decomposition (SVD) and Image Compression.
Denoising and Variational Autoencoders.
A Friendly Introduction to Generative Adversarial Networks (GANs).

Taught by

Serrano.Academy

Reviews

Start your review of Unsupervised Learning

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.