Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a comprehensive video explanation of the paper "Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention." Delve into the reformulation of the attention mechanism using kernel functions, resulting in a linear formulation that reduces computational and memory requirements. Discover the surprising connection between autoregressive transformers and RNNs. Learn about softmax attention, quadratic complexity, generalized attention mechanisms, kernels, linear attention, and experimental results. Gain insights into the intuition behind linear attention and understand the caveats of the RNN connection. This 48-minute video by Yannic Kilcher breaks down complex concepts, making them accessible to those interested in AI, attention mechanisms, transformers, and deep learning.
Syllabus
- Intro & Overview
- Softmax Attention & Transformers
- Quadratic Complexity of Softmax Attention
- Generalized Attention Mechanism
- Kernels
- Linear Attention
- Experiments
- Intuition on Linear Attention
- Connecting Autoregressive Transformers and RNNs
- Caveats with the RNN connection
- More Results & Conclusion
Taught by
Yannic Kilcher