Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Training More Effective Learned Optimizers, and Using Them to Train Themselves - Paper Explained

Yannic Kilcher via YouTube

Overview

Explore a comprehensive video analysis of a groundbreaking research paper on learned optimizers in machine learning. Delve into the concept of replacing traditional hand-crafted optimization algorithms with neural network-based learned optimizers capable of training a wide variety of problems without user-specified hyperparameters. Discover how these optimizers are trained on thousands of tasks, resulting in better generalization to unseen problems. Examine the unique behaviors exhibited by learned optimizers, including implicit regularization and adaptation to changing hyperparameters or architectures. Gain insights into the potential of these optimizers to train themselves from scratch and their implications for the future of machine learning optimization.

Syllabus

- Intro & Outline
- From Hand-Crafted to Learned Features
- Current Optimization Algorithm
- Learned Optimization
- Optimizer Architecture
- Optimizing the Optimizer using Evolution Strategies
- Task Dataset
- Main Results
- Implicit Regularization in the Learned Optimizer
- Generalization across Tasks
- Scaling Up
- The Learned Optimizer Trains Itself
- Pseudocode
- Broader Impact Statement
- Conclusion & Comments

Taught by

Yannic Kilcher

Reviews

Start your review of Training More Effective Learned Optimizers, and Using Them to Train Themselves - Paper Explained

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.