Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

A Novel Mechanism for Edge ML Using Sparse Binary Coincidence Memories

EDGE AI FOUNDATION via YouTube

Overview

Watch a keynote presentation from the tinyML EMEA conference where ICL Professor of Computer Engineering Steve Furber from The University of Manchester introduces Sparse Binary Coincidence (SBC) memories and their application in edge machine learning. Explore how SBC memories function by storing feature coincidences from training examples and using them to classify new inputs based on shared feature patterns. Learn about the advantages of this approach for edge AI applications, including single-pass and continuous learning capabilities, resilience to imperfect inputs, and efficient implementation without requiring floating-point calculations or differentiation. Discover why this novel mechanism is particularly well-suited for resource-constrained platforms used in edge AI and neuromorphic computing systems.

Syllabus

tinyML EMEA Monday Keynote Steve Furber: A Novel Mechanism for Edge ML

Taught by

EDGE AI FOUNDATION

Reviews

Start your review of A Novel Mechanism for Edge ML Using Sparse Binary Coincidence Memories

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.