Overview
Syllabus
– Welcome to class
– Action plan
– State transition equations recap
– The Truck Backer-Upper
– Vehicle configuration
– Implementation in a Jupyter Notebook
– Manual parking tests
– Training: a two-stage learning process
– State update equations for a trailer truck
– Emulator training strategy
– Training protocol I
– Control as RNN again
– Training protocol II
– Unrolling in time AKA BPTT
– Successful controller's trajectories
– Additional resources
– PyTorch partial implementation
– Bayesian neural nets
– Dropout
– Uncertainty for a regressor demo
– And that was it :D
Taught by
Alfredo Canziani