Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

The Challenges and Opportunities of Continual Learning in Real-Time Machine Learning

Snorkel AI via YouTube

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the challenges and opportunities of continual learning in machine learning ecosystems in this 25-minute conference talk from the 2022 The Future of Data-Centric AI conference. Delve into the four stages of continual learning, compare stateful and stateless training, and examine key challenges in the field. Discover solutions for feature monitoring and evaluation, and gain insights into batch prediction versus online prediction, train-predict inconsistency, and deployment strategies. Learn about smart triggers for retraining, fresh data challenges, and the importance of real-time monitoring. Understand temporal shifts and their impact on time window scales, and explore the complexities of monitoring features in continual learning systems.

Syllabus

Claypot
Batch prediction vs. online prediction
Online prediction with batch features
Online prediction with online features
Train-predict inconsistency
"Easy" deployment: static
"Hard" deployment: continual
4 stages of continual learning
Smart triggers for retraining
Continual deployment challenges
Fresh data challenge
Algorithm challenge
Evaluation challenge
Real-time monitoring vs. batch monitoring
What to monitor
Temporal shifts: time window scale matters
Monitoring features: challenges
Monitoring solutions

Taught by

Snorkel AI

Reviews

Start your review of The Challenges and Opportunities of Continual Learning in Real-Time Machine Learning

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.