Overview
Syllabus
Intro
TRINITY FUELING ARTIFICIAL INTELLIGENCE
TASK: NAMED ENTITY RECOGNITION
RESULTS NER task on largest open benchmark (Onto-notes)
ACTIVE LEARNING WITH PARTIAL FEEDBACK
RESULTS ON TINY IMAGENET (100K SAMPLES) Accuracy vs. Mof Questions
TWO TAKE-AWAYS
CROWDSOURCING: AGGREGATION OF CROWD ANNOTATIONS
PROPOSED CROWDSOURCING ALGORITHM
LABELING ONCE IS OPTIMAL: BOTH IN THEORY AND PRACTICE
DATA AUGMENTATION 1: GENERATIVE MODELING
PREDICTIVE VS GENERATIVE MODELS
STATISTICAL GUARANTEES FOR THE NRM
NEURAL RENDERING MODEL (NRM)
NEURAL DEEP RENDERING MODEL (NRM)
DATA AUGMENTATION 2: SYMBOLIC EXPRESSIONS
ARCHITECTURE: TREE LSTM
SOME RESEARCH LEADERS AT NVIDIA
CONCLUSION Al needs integration of data, algorithms and infrastructure
Taught by
Simons Institute