Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Real-Time Forecasting at Scale Using Delta Lake and Delta Caching

Databricks via YouTube

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a 25-minute conference talk on real-time forecasting at scale using Delta Lake and Delta Caching, presented by Databricks. Dive into GumGum's data pipeline and architecture that processes 30 billion programmatic inventory impressions daily, generating near-real-time inventory forecasts with a response time under 30 seconds. Learn about efficient Spark job sampling techniques, best practices for Delta Lake usage, and the advantages of Databricks Delta caching over conventional Spark caching. Discover how GumGum implements time series forecasting with zero downtime using auto ARIMA and sinusoids to capture inventory data trends. Gain insights into AMIND sampling, Delta Lake for sampled data storage, and efficient cluster utilization. The talk covers the entire workflow, from data sampling and caching to search and forecast, including other models and forecasting accuracy.

Syllabus

Introduction
programmatic inventory
why forecast inventory
the scale
Architecture
Data Sampling
Sampling Approach
Types of Sampling
Sampling Daily Job
Search and Forecast
Caching the Data
Workflow
Other Models
Forecasting Accuracy

Taught by

Databricks

Reviews

Start your review of Real-Time Forecasting at Scale Using Delta Lake and Delta Caching

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.