Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Random Matrix Theory and its Applications - Lecture 2

International Centre for Theoretical Sciences via YouTube

Overview

Delve into the second lecture of Random Matrix Theory and its Applications, presented by Satya Majumdar at the Bangalore School on Statistical Physics - X. Explore key concepts in linear algebra and quantum mechanics, including operators, orthogonal transformations, and eigenvectors. Learn about random matrices, their ensembles, and the Gaussian Ensemble. Examine rotation-invariant ensembles and their properties. Engage with examples, exercises, and a Q&A session to deepen your understanding of this advanced topic in statistical physics.

Syllabus

Random Matrix Theory and its Applications: Recap
1. Basics of linear algebra/quantum mechanics
2. Operator
3. Orthogonal transformation
Under this orthonormal transformation
Similarity transformation
4. Eigenvectors & eigenvalues of H Hat
How does one find eigenvalues & eigenvectors?
H Hat =[Hij] -NxN matrix: Matrices with real eigenvectors
Random matrix
Define Random Matrix
Ensembles of random matrices
Wigner matrices
Example
Q: What is the joint distribution of eigenvalues?
Example: Gaussian Ensemble
Rotation invariant ensembles
Under any orthonormal transformation
Example
Exercise: Prove it for NxN case
Q&A

Taught by

International Centre for Theoretical Sciences

Reviews

Start your review of Random Matrix Theory and its Applications - Lecture 2

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.