Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Quantum Tunneling: Modeling with NumPy and Python

Dot Physics via YouTube

Overview

Explore quantum tunneling through a comprehensive video tutorial that guides you in building a model using Python and NumPy. Delve into the theory behind quantum tunneling, learn about the finite difference method, and understand eigenvalue problems. Discover how to create superpositions of eigenstates and set up your Python environment. Follow along as the instructor demonstrates creating potentials, initial wave functions, and Hamiltonian matrices. Learn to calculate eigenvalues and eigenvectors, find c coefficients, and determine Psi(x,t). Conclude with creating simple and VPython animations to visualize quantum tunneling. Access the provided GitHub repository for code examples and refer to the included cheat sheet for quick reference.

Syllabus

- Intro
- Theory
- Finite Difference Method
- Eigenvalue problem
- Superposition of eigenstates
- Python setup
- Creating potential
- Creating initial wave function
- Creating Hamiltonian matrix
- Eigenvalues and eigen vectors
- Finding c coefficients
- Finding Psix,t and simple animation
- VPython animation

Taught by

Dot Physics

Reviews

Start your review of Quantum Tunneling: Modeling with NumPy and Python

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.