Quantum Brownian Motion for Magnets - Janet Anders
Kavli Institute for Theoretical Physics via YouTube
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore quantum Brownian motion in magnetic systems through this 26-minute conference talk delivered by Janet Anders at the Kavli Institute for Theoretical Physics. Delve into the fascinating world of transport and efficient energy conversion in quantum systems as part of a broader conference on the subject. Gain insights into the intersection of statistical physics, condensed matter, and atomic physics, examining how quantum information concepts are applied to understand thermodynamical phenomena. Discover recent experimental advances in creating quantum coherent systems with unprecedented control. Follow the speaker's journey through the introduction, motivation, model development, dynamics analysis, and conclusions, all focused on quantum Brownian motion for magnets. Enhance your understanding of fundamental challenges in quantum physics, including optimal protocols for energy and information transport, as well as state preparation techniques.
Syllabus
Intro
Motivation
Model
Dynamics
Conclusions
Taught by
Kavli Institute for Theoretical Physics