Overview
Syllabus
PyTorch Lecture 01: Overview.
PyTorch Lecture 02: Linear Model.
PyTorch Lecture 03: Gradient Descent.
PyTorch Lecture 04: Back-propagation and Autograd.
PyTorch Lecture 05: Linear Regression in the PyTorch way.
PyTorch Lecture 06: Logistic Regression.
PyTorch Lecture 07: Wide and Deep.
PyTorch Lecture 08: PyTorch DataLoader.
PyTorch Lecture 09: Softmax Classifier.
PyTorch Lecture 10: Basic CNN.
PyTorch Lecture 11: Advanced CNN.
PyTorch Lecture 12: RNN1 - Basics.
PyTorch Lecture 13: RNN 2 - Classification.
Lecture 99: NSML: A Machine Learning Platform That Enables You to Focus on Your Models.
Taught by
Sung Kim