Overview
Syllabus
PyTorch Tutorial 01 - Installation.
PyTorch Tutorial 02 - Tensor Basics.
PyTorch Tutorial 03 - Gradient Calculation With Autograd.
PyTorch Tutorial 04 - Backpropagation - Theory With Example.
PyTorch Tutorial 05 - Gradient Descent with Autograd and Backpropagation.
PyTorch Tutorial 06 - Training Pipeline: Model, Loss, and Optimizer.
PyTorch Tutorial 07 - Linear Regression.
PyTorch Tutorial 08 - Logistic Regression.
PyTorch Tutorial 09 - Dataset and DataLoader - Batch Training.
PyTorch Tutorial 10 - Dataset Transforms.
PyTorch Tutorial 11 - Softmax and Cross Entropy.
PyTorch Tutorial 12 - Activation Functions.
PyTorch Tutorial 13 - Feed-Forward Neural Network.
PyTorch Tutorial 14 - Convolutional Neural Network (CNN).
PyTorch Tutorial 15 - Transfer Learning.
PyTorch Tutorial 16 - How To Use The TensorBoard.
PyTorch Tutorial 17 - Saving and Loading Models.
Create & Deploy A Deep Learning App - PyTorch Model Deployment With Flask & Heroku.
PyTorch RNN Tutorial - Name Classification Using A Recurrent Neural Net.
PyTorch Tutorial - RNN & LSTM & GRU - Recurrent Neural Nets.
PyTorch Lightning Tutorial - Lightweight PyTorch Wrapper For ML Researchers.
PyTorch LR Scheduler - Adjust The Learning Rate For Better Results.
Taught by
Python Engineer